4/28/2009

Detailed description of numerical control hydraulic die forging hammer

5.1 Hydraulic principle of numerical control hydraulic die forging hammer
Numerical control hydraulic die hammer used pump - accumulator drive, the lower cavity of fuel tank is connected with normal pressure, hydraulic system controls upper cavity separately. Open filling valve (also known as hit valve), the high pressure oil from pump, accumulator and lower cavity through differential circuit, total of three parts enter into the upper cavity to achieve the hammer head fall acceleratively and hit stroke. Once the upper cavity release pressure, the hammer head return back rapidly. The precise control of hit energy is achieved by numeralization control, which is decided by the length of time of control valve closing.

After the main pump starts up, filling oil to the accumulator make hammer head lift up, the lower cavity of main fuel tank is connected with accumulator, which makes the hammer head to the upper limit, hammer is lifting status. When blowing down, through the control valve closing time to control the hit energy, make oil of lower cavity return back into the upper cavity, high-pressure oil of accumulator pump to achieve hitting. During hoisting hammer condition, control unloading valve of pressure sensor opened, pumps are no load running, pressure oil of accumulator kept pressure, which makes hammer head safe. System oil temperature doesn’t heat, energy is saving. The main hit valve’s reversing is high sensity and is good sealing characteristics. The whole is the overhead structure, the integrated assembly, without reducing the oil pipeline and high reliability.
The hydraulic system just control the upper chamber, through controlling the closing time of hit valve realizes the size of hit energy, hit valve is two stage control valve, first-level lead valve is a two-position three way directional control valve, the system requires high quality for it, should have high-frequency and also require high repeat accuracy.
Using top set structure, the internal oil route sealed on the main valve block, such structure caused the hydraulic system realized the integration, compare with oil tank adopted side set type, the piping system length reduce greatly, the energy loss reduced above 1 time, in addition through the integration, the oil route connection realized no tube connection, increased the connection reliability.
In the hydraulic system has established a safety valve between the accumulator and the bottom chamber, once hammer rod break from middle, cut-off the bottom chamber oil and accumulator immediately, thus enhanced the degree of security of operation.
The oil tank is top set type, the tank body is weldment, which uses the CO2 protection welding, conforms to JB/T5000.3-1998 and ZQ4000.3-86 "Welding General Specification Requirement" the concerned requirements, the tank body conforms to the JB/T5000.12-1998 concerned requirements after the surface treatment.
Flaw detection after the oil tank welding ceased the fat liquor leakage.
The oil tank uses enclosed type, can reduce the pollution
The hydraulic pressure station box body establishes reinforcement bar partly, causes the box body intensity to be high; The high-pressured oil route channel is unimpeded, the fat liquor resistance was small, heat gives off was few, enhanced the reliability

Liftout part
The Numerical Control hammer has liftout hydraulic station,the liftout installed in the die block,can choose the auto liftout and pedal liftout at will.
Cooling part
The main function of the cooling part is adjust the oil temperature,the cooling type have two kinds:plate type heat exchanger (water cooling)and electro cooling.。
Plate type heat exchanger(water cooling):
It mainly includes heat exchange pump group, plate type heat exchanger, water pump(user supply)、cooling tower(user supply)、water reservoir(user build)。Suck the hot oil of the oil return area of oil tank then sent to heat exchanger,heat exchange with the circulating water,back to suck area of oil tank after exchanger. The circulating water is cool water taken out from the bottom part of water reservoir by water pump(water temperature≤30℃)come into heat exchanger absorbed heat of hot oil then flow into cooling tower to cooling, flow into water reservoir after cooling.
The oil temperature better don't exceed 55℃ is a essential condition to ensure the system working normally. Therefore set oil-cooling system specially on the electro hydraulic hammer. The oil come to the plate type heat exchanger through hot oil pump, completes the heat exchange, when the system long time operation, exceed the temperature set of bimetallic thermometer discrete sampling, UC4-75 electric bell warning.
The feature of plate type heat exchanger is the heat transfer loss small, the thermal efficiency high, the structure is compact. But it must have sufficient water source and the cooling system.
Electro cooling
Electro cooling machine:Collect the cooling, heat and precision filter three large function
And has the remote control, filter chock warning functions and so on, thus guarantee the electro hydraulic forging hammer operated reliably.
Open the electro cooling machine(use NTC temperature sensor display the detection oil temperature on numeral display thermostat, and compare the detection oil temperature with the set temperature at the same time, if the oil temperature higher than the set value)start compressor.
Start cooling → condenser → expansion valve → evaporator (heat exchanger),hydraulic oil → oil tank → pump → evaporator(temperature depress)→ filter →oil tank. Circle like this till oil temperature reach set value. When the oil temperature lower than the lower limit of set ,controller start heater according to the signal send by temperature sensor.
Lubrication part
The self-lubrication device also can be adjusted by the customer, the adjustment is also the touch screen adjustment input, like how long the lubrication pump work. It can adjust by the user according to the actual situation.
Vibration isolation foundation part
The numerical control hammer foundation adopts Germany technical GERB vibration isolation device
The feature of the vibration isolation foundation:
(1)The size of base reduce more relative fixed support,leave out crossbar beam, fembedded part,saved the foundation cost and the construction time,maintenance facility。
(2)The vibration isolation effect is good,can reduce vibration 80-95%。
(3)The life high to 30-50 years,so no need rework.
(4)Simplify the leveling of machine,it can adjust when the foundation go down or incline.
(5)Reduce the vibration level of machine self and round equipment,reduced the failure rate of hydraulic press system and electro control system.
The compose of the vibration isolation device:
This system is composed of spring and stagnant damper
The function of spring is to supply elasticity cushion,reduce system natural frequency. It adopts helical spring, this spring bear high and elasticity large.
VISCO® stagnant damper have in the macroviscosity liquid cylinder body and a special shape plunger insert into liquid, the plunger do movement transform the mechanical energy into the heat energy in the liquid, this make the shock motion of forging hammer weaken to zero. Regarding attacks equipment, can absorb the impacting energy, make the equipment tends to be stable rapidly after the equipment was subject to the impact disturbance, guaranteed forging hammer's impact vibration completely steadily before next time hit, the forging hammer cannot have double hit resonating. Distance forging hammer 10, the ground oscillator measurement curve (sees following drawing)

Numerical control hydraulic die forging hammer design and acceptance standard

Voluntary standards:

Design and manufacture, assembly, testing, inspection, etc of forging hammer. based on the following:
AD/ZGZ-02-12-2005.11
JB/ZQ44163-95、JB/ZQ44164-95 standard
Sources of standard
GB3766-83 General technical requirements of hydraulic systems
JB2131-77 Forging components General technical requirements
GB5226-85 Machine Tools Technology
JB2738-80General Machine Tools Electricity Transmission and Control
JB2855-80 Machine Tool Painting Technology
JB3623-84 Forging Machinery Noise Measurement Method
JB1294-83 Pneumatic Forging Hammer Technology
JB8-82 Nameplate
JB2254-79 Machine Tool Rust-proof Technology
JB2759-80 Machine Tools Packaging General Technology
JB1829-86 Forging Press Machinery General Technology
JB4203-86 Forging Press Machinery Safe Technology
JB/ZQ20224-88 Electro Hydraulic Forging Hammer Reversing Valve, Hydraulic reversing valve, Hand operated direction valve, Stroke reversing valve Quality
JB/T4162-91 Ultrasound wand rolling forging method
JB/ZQ4000·9-86 Assembly General Specification
JB/ZQ4000·8-86 Pipeline and Container Welding& Rustproof General Specification
JB/ZQ4000·10-26 Painting Dressing General Specification
JB/ZQ4286-86 Packaging General Specification
JB/ZQ4000·5-86 Foundry General Specification
JB/ZQ4000·7-86 Forging General Specification
JB/ZQ4000·3-86 Weld Assembly General Specification JB/ZQ4000·2-86 Machining Parts General Specification

Advantage for Numerical Control Hydraulic Forging Hammer


1. Company advantage
Our company is the only forging equipments manufacturer to produce numerical control hydraulic die forging hammer. We provide the whole service such as design, manufacture, installation, testing and after sale service. We produce the C92K series numerical control hydraulic die forging hammer such as 6.3kj, 8kj, 10kj, 12.5kj, 26kj, 20kj, 25kj, 31.5kj, 40kj, 50kj, 63kj, 80kj, 100kj, 125kj, 160kj.
Our company is the only numerical control hydraulic die forging hammer manufacturer to public the Quality Assurance in China Industry News. You can trust absolutely in quality and after sale service.
Our company exported more machines than other hammer manufacturer. We exported 5T hydraulic open die forging hammer and 1T hydraulic close die forging hammer to India, Burma in 2002; we exported hydraulic forging hammer of more than six hundred thousand US dollar to India. It’s the biggest order in hydraulic hammer line in China.
We are the only manufacturer to export large hydraulic hammer to Europe (Romania), and we exported 5-8T hydraulic hammer and forging manipulator etc 12 sets to India in 2007.
Our company held the fifth customer special meeting which is biggest manufacturer in 2006. Nearly 600 representatives came from 29 provinces and cities as well as 30 foreign customers from 7 countries took part in this meeting.
Our company is awarded the high tech fast progress company by He’nan Province.
Our company drafted the national standard for numerical control hydraulic hammer, electro hydraulic hammer, pneumatic hammer and riveting machine.
Numerical control hydraulic hammer was awarded national Patent Award for 4 items (the patent No. is ZL200520128397.9 for hydraulic pressure setting; ZL200520128374.8 for vibration damping; ZL200520128395X for taper sleeve connecting hammer head and hammer rod; ZL200520128396.4 for hammer head guide)
2 Research advantage
Our company produced the first 6.3kj, 25kj double swage close die hammer in 1992.
Our company produced the first 2T numerical control hydraulic close die forging hammer in 2005.
We researched and developed the 16T hydraulic hammer from 2007.
Our company produced the first C41-2000kg pneumatic hammer in 2005.
3 Numerical control hydraulic die forging hammer.
C92K series numerical control hydraulic die forging hammer is digital control forging equipments witch can control the hitting energy. The hitting energy deviation is between ± 1.5%, it is the world advanced forging hammer. It has advantages as below:
Hitting energy and working procedure can be numerical controlled.
High hitting frequency, fast returning and longer die life.
The transplacement between topper and lower die is ≤0.2mm, protecting the precision forgings and utilization of material is high.
Adopting vibration isolation device made in Germany, reducing 80% vibration.
The upper and lower chamber of working cylinder of C92K series is hydraulic driven. The lower chamber of working cylinder is always connecting accumulator getting hydraulic oil, operation system just control upper chamber. When lifting hammer, it can realized by control valve (hitting valve) connecting oil tank return: When hitting, control valve (hitting valve) make upper and lower chamber connected, it can realized by differential hitting by area differential between rod chamber and non rod chamber. Hitting valve is controlled by two grade pilot valve, one grade pilot valve control two grade pilot valve, two grade pilot valve control hitting valve. Numerical system controls one grade pilot valve open-close time to realize the precision hitting energy.
Structure is compact and reasonable. Two upright columns and anvil is integrative and this structure forms “U” Frame, equipped with “X” type guide rail, making hammer head has reasonable clearance but don’t be easy to jam. We adopt vibration isolation device, then hitting vibration disappear to realize protecting environment and person’s health. And design the pneumatic safety pin to lock hammer head to prevent accident.
Hydraulic system and structure design is safety and credible, realizing high frequency and high precision hitting. Optimizing the hitting valve structure, under changing direction credible, assure no abrasion and good sealing. Integrated oil circuit connected, realize no pipe system, reduce leaking oil, strong the appearance specification. Also designing the safety valve, if hammer rod rupture, the safety valve can envelop the pressure oil month, avoid high pressure oil leak, to realize safe, operation credible.
Numerical control system controls hitting energy and hitting frequency by adopting control pilot valve of hitting valve open and close time. Adopting touching screen to put in and out data, set hitting energy by program, it can control oil temperature and problem checking.
4 The advantage of numerical control hydraulic die forging hammer
Realizing precision control for hitting energy
By accurately control closing time for hitting valve, C92K series hammer protected the energy right for forgings and don’t produce extra hitting kinetic energy, so some key parts like hammer rod, hammer rod and upper and lower die, its using life is longer more. Observation indicates that energy deviation control is about ±1.5%. For different height die, you can easily adjust start and end time, to assure energy accurate.
Return speed fast
Because the main fuel tank is connected with the lower cavity of accumulator, once the upper cavity releases pressure, the hammer head can be quickly lifted, so mold contact time is short. The performance and energy control are combined, forging hammer life can improve more than once.
High forging precision:
This hammer adopts “X” shape guide rail, and guide space can be adjusted very small and forging piece precision is high.
High material using:
Because energy can be controlled, a high accuracy system for billet, the edges of are evenly. Also because of high forging precision, top and bottom mold do not arise mistake, so a very high material utilization, fewer non-cutting has laid a foundation.
Low noisy:
Because the machine hitting energy can be controlled, from program to complete the forging, it doesn’t need to supply extra energy, the noisy is very little. The operators of traditional forging hammer listen to the voices of die to determine whether the forgings are completed. Sometimes because of mistake judge, operators used to hit more times, and they are actually redundant.
No hitting roof:
Through the accurate calculation and design of hydraulic damping system and hole size, making the hammer buffer from top. It is smooth and no hitting t top situation happened.
Lower vibration:
The hitting energy can be controlled by program, so no excess energy is generated. In the meanwhile, the hammer equipped with Germany isolation vibration, it will not impact on machine tools and residential around.
Environmental protection:
During forging process, the impact of noise is low, and because of isolation vibration absorber, vibration is small, which is an environmental protection product.
Forging quality is stabilization:
By the control of program controller, a wide range of forging processes can be deposited into the program. It can be called out and used at any time, so the same forging could get the same number of hitting energy and times to avoid the manual operation of the diversity and therefore forgings quality are more stable.

4/27/2009

锻压教案一

锻 压 成 形 学习提示: 锻压是锻造和冲压两者的合称。锻造又分为自由锻和模锻两类,都是制造受载大的重要零件所用的热加工方法;冲压则主要是指利用模具制造薄板零件的冷加工方法。 本章的主要教学要求是: 1)了解锻压的生产主要过程及其工艺特点。 2)熟悉自由锻的基本工序及应用范围,了解胎模锻和模锻生产。 3)了解冲压加工基本工序及模具的基本知识。 教案一 锻压成形基础知识 (30分钟讲课) 一、锻压成形原理 锻压是在外力作用下使金属材料产生塑性变形,从而获得具有予期形状尺寸和机械性能的毛坯、型材、或零件的加工方法。 塑性变形是锻压成形的基础。大多数钢和有色金属及合金都有一定的塑性,因此,它们 均可在热态或常温下进行锻压成形。 金属锻压成形在机械制造、汽车、拖拉机、仪表、电子、造船、冶金及国防等工业 中都有着广泛的应用。以汽车为例,汽车上70%左右的零件是利用锻压加工成形的。 二、 锻压成形的主要方法 锻压成形的主要方式有以下几种。 1. 锻造 将金属坯料加热到高温状态后,,放在上下砧铁或模具间,并在外力作用下产生塑性变形的方法称为锻造(如图1)。按照成形方式的不同,锻造又可分为自由锻造和模型锻造两大类。自由锻造按其设备和操作方式,又可分为手工自由锻和机器自由锻。在现代工业生产中,手工自由锻已逐步为机器自由锻所取代。锻造主要用于生产各种重要的、承受重载荷的机器零件毛坯,如机床的主轴和齿轮、内燃机的连杆、炮筒和枪管以及起重吊钩等。


图1 锻压 2. 冲压 利用冲模使金属薄板受力产生分离或变形的工艺称为冲压(如图2)。冲压一般在常温下进行,故又称为冷冲压。冲压又可分为落料、冲孔、弯曲、拉深等。冲压广泛用于汽车、拖拉机、航空、仪表及日用品工业部门。

图2 冲压

三、 锻压成形加工方法的特点
1) 锻压加工后,可使金属获得较细密的晶粒,可以压合铸造组织内部的气孔等缺陷,并能合理控制金属纤维方向,使纤维方向与应力方向一致,以提高零件的性能。
2) 锻压加工后,坯料的形状和尺寸发生改变而其体积基本不变,与切削加工相比,可节约金属材料和加工工时。
3) 除自由锻造外,其它锻压方法如模锻、冲压等都有较高的劳动生产率。
4) 能加工各种形状、重量的零件,使用范围广。

现代锻锤技术的发展与创新


概述
通过论述运用现代化电液锤技术发展起来的不同原理和结构形式的锻锤,体现电液锤技术的创新性,展现电液锤技术在未来的发展方向。
传统的蒸-空两用锻锤是上世纪中前期锻造行业的主导产品。随着现代液压技术和电控技术的高速发展,电液锤逐渐发展起来,尤其在上世纪八十年代得到突飞猛进的发展。其中液气式电液锤通过不断创新,技术日趋成熟。该项技术由于既适合自由锻,又适合模锻,因此该项技术推广很快,也得到了广大用户认可,目前国内生产的电液锤的95%以上都是液气式电液锤。按照技术成熟程度的高低依次排列出不同结构原理的电液锤:
1)液气式电液锤; 2)全液压电液锤: 3)程控全液压模锻锤、 4)手动全液压模锻锤。
一、液气式电液锤
1、原理
液气式电液锤的基本原理是:工作缸上腔是封闭的高压氮气,下腔是液压油,中间靠锤杆活塞隔开,系统对下腔单独控制,下腔进油,锤头提升,高压氮气受到压缩,储存能量,下腔排油,高压氮气驱动活塞带动锤头打击,简称“气压驱动,液压蓄能”。
电液动力头,它的主体是一个箱体,作为工作时短期容油的油箱(不工作时,油箱内的油液经回油管进入置于地面的液压站的油箱内),有八条螺栓通过缓冲垫、预压弹簧固定在原汽缸的位置,该油箱又称连缸梁,在其中间装有主缸,主缸顶部装有缓冲缸,内有缓冲活塞,活塞上部充有一定压力的氮气,其压力与蓄能器上部的气压相同。
主缸下部有两个孔分别与快速放液阀和保险阀连通。液压站来油通过管路进入箱体右上侧安装的主操纵阀和蓄能器中,蓄能器下部的油腔直接和主操纵阀相通,上部通过管路接气瓶组。主缸内装有锤杆活塞,活塞将下部的油液和上部的氮气分开,活塞上部充有一定压力的氮气,并与副气罐连通。锤杆下部和锤头刚性连接,靠楔铁压紧,操作部分基本不变。液压系统采用泵——蓄能器——卸荷阀组成的组合传动恒压液源,既保证了系统的稳定性和可靠性又大大降低了装机容量。电液锤的基本动作是提锤和打击两种。
提锤时,只需操纵主阀使油泵蓄能器内的高压油和主缸活塞下腔相通即可。锤杆活塞在高压油的作用下,迅速完成锤头的回程。
打击时,操纵主阀使活塞下腔和油箱相通,快放阀打开,活塞下部的油通过大孔径通道流回液压站油箱,同时活塞上部在气体压力和锤头系统重力作用下,使锤头加速向下运动,直到形成打击为止。
能量大小的获得,可用手柄控制打击行程实现,操纵部分可完成提锤、打击、回程、慢升、慢降和急停收锤、悬锤等多种动作。
2、结构和组成
⑴.机身部分包括:左右机身、左右导轨、底座(自由锻)等; ⑵.砧座部分包括:砧座、砧垫、下砧块(自由锻)及相关零件等; ⑶.动力头部分包括:连缸梁、锤头、锤杆、气缸、缓冲缸、连接板、上砧块(自由锻)等; ⑷.液压站部分包括:油箱、电机——油泵组、电控卸荷阀、阀座、电控温度表、换热电机泵组、换热器、滤油器等; ⑸.专用阀、安全阀部分包括:主控操纵阀、快速放液阀、保险阀、霍尔开关等; ⑹.管路、润滑部分包括:管路支架、油气管、润滑泵等; ⑺.操纵部分:由操作手柄组合件组成; ⑻.气瓶组部分:氮气瓶、气瓶架和汇气筒、高压球阀等; ⑼.电控部分包括:主电机、冷却电机、电控箱、按钮站等; ⑽.水冷却部分包括:冷却水塔、水池、水泵、电机、水管、阀门(以上用户自备); ⑾.基础部分包括:地脚螺栓组件等。
3、技术创新
安阳锻压机械工业有限公司在推进实施电液锤产业化过程中,凭借自身的技术力量,紧密联系用户工艺和要求,勇于攻关,解决了一系列技术难题。对电液锤进行了多项创新设计,创造出具有“安锻特色”的电液锤产品,介绍如下: ⑴.设计了“X”形导轨结构:
国内蒸—空锻锤的梳形导轨存在力臂短、过定位、无温度补偿功能的缺点。为了不使锤头因升温膨胀使导轨间隙减小而导致卡死,只好加大导轨的冷态间隙。打击时锤杆受附加弯矩,易断裂,用于多模腔锻造时导轨磨损严重。
为了克服这个弱点,我们对电液锤主机进行了创新设计,采用“X”形导轨结构。由于X型导轨有较长的力臂,锤头的热膨胀方向与导轨面方向基本一致,热膨胀时对导轨间隙影响不大,导轨间隙可以调得很小(0.2mm左右),这样就使得锻造过程中的偏击力,全部由锤头导轨来承担,使得锤杆寿命大大提高。
⑵.延长密封寿命,避免油气互窜:
a.液气锤工作缸上腔是高压氮气,下腔是高压油,因此早期的电液锤很容易发生 b.采用耐磨、耐高温的导向环和具有较强补偿能力的Ky圈。 c.根据封油和封气介质的不同,选用邵氏硬度不同的Ky圈。 d.加强动力头的定位。
⑶. 解决非正常寿命锤杆断裂问题:
a.改进锤杆和锤头联接方式,依据摩擦学原理,设计出了3套件(压件、锥套、锤杆)涨紧结构,使得锤杆由原来的“双锥结构”改为“单锥结构”,大大避免了应力集中的产生,从而达到了既联接可靠又拆卸方便。锤杆寿命成倍提高。 b.锤杆表面进行了滚压处理,提高了表面硬化层,从而提高锤杆的使用寿命。
⑷.解决了阀的灵活性问题;
早期的电液锤操作灵活性差及慢降动作不好一直是用户头疼的一个问题,过去曾经流传过“自由锻电液锤并不自由”,针对这一问题,我们采取以下措施:
a.改进二级阀的设计,加大节流孔的面积,从而提高慢降过程中的流量和流速。 b.缩短主阀与二级阀的距离,实现“零距离”连接,从而缩短了二级阀的反应速度,消除了容积效应的影响。
⑸.粗锤杆理论用于动力头改造;
电液锤柔性细锤杆理论是很著名的,它是德国Lasco公司发明的,电液锤柔性细锤杆理论,彻底改变了原蒸—空锻锤的“导轨—锤头—锤杆”系统的刚性条件,使锻造过程中的偏击力,大部分由锤头导轨来承担,这对于自由锻锤来说,由于其锻造工艺特点,偏击力不大,这时柔性细锤杆正好发挥其独特的优越性。
但对于多模腔锻造的模锻锤实施“换头”改造,“柔性细锤杆理论”显然是不适用的。由于多模腔锻造的偏击力很大,再加上终锻时冷击现象严重,所以,导致导轨早期损坏严重,甚至出现“卡锤”现象。因此,我们在进行“换头”改造时,对于多模腔锻造且偏载力大的模锻锤,仍然沿用蒸—空锻锤的“刚性粗锤杆理论”,取得满意效果。
⑹. 创新设计连缸梁内部结构;
早期的电液锤动力头从主操作阀到二级阀阀座是由一根无缝管相连,两端焊接。这根管在工作过程中受交变载荷,锤头回程时该管带载,锤头打击时该管卸荷,周而复始,所以对工况比较恶劣的锤就会出现管子破裂和焊缝开裂的现象。
由于这根管在连缸梁的箱体内部,一旦失效,很难修复,即使修复也很难保证质量,所以它就成为一个较大隐患,也是影响动力头寿命的主要因素。为解决这个问题,我们将二级阀阀座直接移到主阀下面,去掉了这根焊接管,而缸体采用整体优质铸钢件,从而实现连缸梁内部的无管化连接,提高了电液锤关键零件的可靠性。
⑺. 开发设计了大通径阀和二级阀;
随着大吨位电液锤开发设计,主缸下腔油环形面积越来越大,必须有配套通径的快放阀和主阀,才能保证大吨位锤的打击能量和打击频率。我们在原有的50型阀的基础上开发设计了配套的70型主阀和二级阀,后又开发80型主阀和二级阀。我们在1吨、2吨自由锻和模锻电液锤采用50型阀,在3吨自由锻和3吨、5吨模锻电液锤上采用70型阀,在5吨自由锻电液锤上采用80型阀。
⑻.新型的防撞顶装置使保护更加安全可靠;
自由锻锤的锤头运动特点是快打、快提,锤头撞顶机率高,对缓冲缸的缓冲特性要求高。 通过对早期的电液锤缓冲缸结构缺点分析,我们改进了设计,将缓冲缸和蓄能器的气腔连同,使其压力匹配,提高了防撞顶的可靠性。
⑼.解决系统发热问题
电液锤系统发热问题,也是一个很大的技术难题,它严重影响系统的密封性能和工作性能,对此,我们采取了以下措施,有效控制了系统发热问题。一是最大限度地减少系统液阻,合理选择油管通径,把流速控制在合理范围内,二是提高主阀和二级阀耐磨损能力,减少内卸,三是采用散热系数较高的板式换热器和较大流量的冷却泵,提高冷却速度和油的循环次数。
⑽.解决油路振动问题;
电液锤的油路振动问题,对系统的可靠运行也是一大危害。为此我们采用阻断震动源和缓冲振动波的方法,取得了很好效果。一是凡与主机连接的管道和与液压站连接的高压管道都采用弹性连接;二是在高压管道上增加缓冲蓄能器;三是压力表全部采用耐震压力表,表座用四根拉簧悬挂起来,连接管采用微型胶管连接。
二、全液压电液锤
全液压电液锤是工作缸上下腔工作介质全部采用液压油,工作缸下腔始终接蓄能器通常压,液压控制系统单独对上腔控制。提锤时,控制打击阀使上腔接通油箱,即可实现。打击时,控制打击阀使上腔与下腔联通,此时上下腔油压相等但作用面积大小不一样,因而能实现差动打击。
从原理上可以看出,在打击过程 中上下腔要同时进出油,双腔流动,因此油速受很大的限制,否则效率会很低,最好的解决方式是降低流速。一但速度下降,要保持打击能量不变的情况(E=1/2mv2),锤头质量必须加大。而要保持较高的打击频次的话,必须降低行程。简单地说就是“大锤头、短行程”,因此全液压锤仅适用于模锻锤上,尤其适合程控的模锻锤上,而不适合对手动操作灵活性很强的自由锻上。这种理论,我们可以从国际上锻锤发展趋势得到验证。
三、程控全液压模锻锤
1、原理:
程控全液压模锻锤的基本原理是:采用油泵-蓄能器传动,油缸下腔通常压,液压系统对上腔进行单腔控制。上腔进油阀(亦称打击阀)打开,来自油泵、蓄能器以及通过差动回路引来的下腔的共三部分高压油进入上腔,实现锤头的加速向下和打击行程,上腔一旦卸压,锤头立即快速回程,打击能量以控制打击阀闭合时间的长短来实现。
2、基本结构
⑴.机身采取立柱与砧座为一体的“U”形机身。这种结构形式虽然给铸造、起重和机械加工带来一定的困难,但却有如下优点:a.增加了立柱的纵向、横向和倾覆刚度,确保了锤头的精确导向,有利于提高原材料的利用率;b.U形机身使二个立柱亦成为砧座重量的一部分,有利于整机重量的降低和打击效率的提高;c.U形实心铸造机身产生的打击噪音明显小于箱形和弓形立柱的机身。
⑵.导轨:国内蒸—空锻锤的梳形导轨有力臂短,无温度补偿的缺点。为了不使锤头因升温膨胀使导轨间隙减小而导致卡死,只好加大导轨的冷态间隙,这就是在蒸—空锻锤上难以进行精密模锻的原因。我公司开发的50KJ程控全液压锤采用“X“形导轨结构。由于锤头受热时呈径向辐射状膨胀,导向面呈对角线布置,就不会因锤头受热膨胀而减小导向间隙。我公司的程控锤加大了导板的宽度,X形导轨又有较长的力臂,这就会明显地减小偏击时作用在导轨面上的比压,有利于延长导板的使用寿命。
⑶.液压系统
a.液压系统采用油泵—蓄能器组合传动,主油缸下腔始终与蓄能器相通,为常压。液压系统仅控制上腔,它是通过对打击阀闭合时间的控制来实现打击能量的大小,打击阀是三级控制阀,先导阀是一个二位三通换向阀,系统对它的质量要求很高,既要有高频率而且重复精度要求较高,因此我们选用进口原装件;
b.打击阀采用锥阀结构,与传统的滑阀相比,具有无磨损的优点,密封可靠性大大提高;
c.油箱采用顶置式结构,内部油路封闭在主阀块上,这样的结构使得液压系统实现了集成化,与油箱采用旁置式结构相比,管道系统长度大大缩短,能量损失降低1倍以上,另外通过集成化,油路连接实现了无管化连接,增加了连接的可靠性;
d.液压系统中在蓄能器与下腔之间设置了安全阀,一旦锤杆从中间断裂,马上将下腔油与蓄能器切断,从而提高了使用的安全性。
⑷.减振系统采用德国(青岛)隔而固技术,从而隔离了锻锤在打击过程中产生的振动。
⑸.程控系统是根据锻件需求程序控制打击能量和打击次数,我公司的程控全液压锤采用OMRON中型C200HS可编程序控制器,并配以数字输入输出模块,用以在控制面板上设定打击能量。在保护系统采用四路模拟量输入。电动机采用预埋温度传感器方法,采集温度数据以供PLC分析,油温用插入式传感器采集油温变化,用以全过程PID(循环控制)调节。
3、性能特点
⑴.能实现打击能量的精确控制。
该程控锤通过精确控制打击阀的闭合时间,既保证了锻件所需的能量,又不产生额外的冲击动能,因此一些关键零部件如锤杆、锤头及上下模具的寿命大大提高。
⑵.回程速度很快。
由于主油缸下腔始终通蓄能器,上腔一旦卸压,能迅速抬锤,因此模具接触时间短,该性能与能量精确控制相结合,可以使锻模使用寿命提高1倍以上。
⑶.锻造精度高:
该产品由于导轨采用“X”形结构,因此导轨间隙可以调得很小,打出的锻件精度很高。
⑷.材料利用率很高
由于能量可以控制,因而制坯精度很高,打出的锻件飞边较为均匀,又由于锻造精度高,上下模不会出现错模现象,因此材料利用率很高,为少无切削奠定了基础。
⑸.低噪音
由于该产品属打击能量可程控设备,因此编制程序,使锻件打成,但不多给剩余能量,因此噪音很小。传统锻锤的操作者是靠听模具打靠声音来判断锻件是否打成,有时判断不准,习惯于多打几下,实际是多余的。
⑹.无撞顶现象
通过精确计算和设计液压系统中阻尼孔和节流孔尺寸,使得锤头到顶缓冲下来,很平稳,无一点撞顶现象的发生。
⑺.低振动
由于该产品打击能量可程控,无多余能量产生,加上锤身下部装有德国技术生产的隔而固品牌隔振器,对周围机床、居民区无任何影响。
⑻.环保:
由于该产品在打击过程中,冲击噪音小,又有减振器,振动小,因而是一种环保型产品。
⑼.锻件质量较为稳定
由于通过程序控制器的控制,各种各样锻件的锻造工序可存入程序中,随时根据需要调出来使用,因此同一种锻件可以得到一致的打击能量和打击次数,避免了人工操作的多样性,因此锻件质量比较稳定。
四、手动全液压模锻锤
1、原理:
手动全液压模锻锤的基本原理是:采用油泵--蓄能器传动,通过一个手动式滑阀起先导阀作用来控制四个大通径插装阀来实现提锤、悬锤、慢降、打击等动作。
2、与程控锤相比的优缺点:
优点:
⑴.操作机构既可手动操作,也可脚踏操作,能量的大小靠操作者控制锤头行程来实现,操作比较灵活。 ⑵.结构较简单,维修方便。
缺点:
⑴.能量不能精确控制,难以实现精密锻造; ⑵.由于油压比程控锤小,因此行程较长,打击频率较小,生产效率偏低。
来源:[www.chinanics.com]中国机电网·机电门户类电子商务平台!

金属塑性成形

金属塑性成形


在工业生产中,金属塑性成形方法是指:金属材料通过压力加工,使其产生塑性变形,从而获得所需要工件的尺寸、形状以及性能的一种工艺方法。


常用的金属塑性成形方法如下:


第一节锻造



锻造是金属热加工成形的一种主要加工方法,通常采用中碳钢和低合金钢作锻件材料,锻造加工一般在金属加热后进行,使金属坯料具有良好的可变形性,以保证锻造加工顺利进行。基本生产工艺过程如下:


下料→坯料加热→锻造成形→冷却→热处理→清理→检验。


一、锻坯的加热和锻件的冷却


1.加热的目的:锻坯加热是为了提高其塑性和降低变形抗力,以便锻造时省力,同时在产生较大的塑性变形时不致破裂。一般地说,金属随着加热温度的升高,塑性增加,变形抗力降低,可锻性得以提高。但是加热温度过高又容易产生一些缺陷,因此,锻坯的加热温度应控制在一定的温度范围之内。


2.锻造温度范围:各种金属材料在锻造时允许的最高加热温度,称为该材料的始锻温度。加热温度过高会产生组织晶粒粗大和晶间低熔点物质熔化,导致过热和过烧现象。碳钢的始锻温度一般应低于其熔点100~200°C,合金钢的始锻温度较碳钢低。金属材料终止锻造的温度,称为该材料的终锻温度。坯料在锻造过程中,随着热量的散失,温度不断下降,因而,塑性越来越差,变形抗力越来越大。温度下降到一定程度后难以继续变形,且易产生锻裂,必须及时停止锻造重新加热。


从始锻温度到终锻温度之间的间隔,称为锻造温度范围。确定锻造温度范围的原则是:在保证金属坯料具有良好锻造性能的前提下,尽量放宽锻造温度范围,以降低消耗,提高生产率。


几种常用材料的锻造温度范围见表4―1。



在实际生产中,锻坯的加热温度可以通过仪表来测定,也可以通过观察被加热锻坯的颜色(火色)来判断。碳钢火色与其对应的温度关系见表4―2。



3.锻件的冷却锻件的冷却是保证锻件质量的重要环节。锻件的冷却方式有三种:(1)空冷在无风的空气中,锻件放置于干燥的地面冷却。(2)坑冷在充填有砂子、炉灰或石棉灰等绝热材料的坑中以较慢的速度冷却。(3)炉冷在500~600°C的加热炉中,随炉缓慢冷却。


碳素结构钢和低合金钢的中小型锻件,一般锻后均采用冷却速度较快的空冷方式冷却,成分复杂的合金钢锻件大都采用冷却速度较慢的坑冷或炉冷,厚截面的大型锻件采用炉冷。冷却速度过快会造成表面硬化,对后续切削加工产生不利影响。


二、自由锻


自由锻是将加热好的金属坯料放在锻造设备的上、下砥铁之间,施加冲击力或压力,直接使坯料产生塑性变形,从而获得所需锻件的一种加工方法。


自由锻由于锻件形状简单、操作灵活,适用于单件、小批量及重型锻件的生产。自由锻分手工自由锻和机器自由锻。手工自由锻生产效率低,劳动强度大,仅用于修配或简单、小型、小批锻件的生产,在现代工业生产中,机器自由锻已成为锻造生产的主要方法,在重型机械制造中,它具有特别重要的作用。





  • 自由锻设备

自由锻的设备有空气锤、蒸汽―空气锤及自由锻水压机等。其中空气锤和蒸汽―空气锤通过冲击力使金属材料产生塑性变形,适用于锻造中小型锻件;水压机锻造时采用静压力完成塑性变形过程,一般用于锻造大型锻件。


1.空气锤图4―1为空气锤的外形图和工作原理示意图。它有压缩气缸和工作气缸,电动机通过减速机构和曲柄连杆机构,带动压缩气缸的压缩活塞上下运动,产生压缩空气。当压缩缸的上、下气道与大气相通时,压缩空气不进入工作缸,电动机空转,锤头不工作;通过手柄或踏脚杆操纵上下旋阀,使压缩空气进入工作气缸的上部或下部,推动工作活塞上下运动,从而带动锤头及上砥铁的上升或下降,完成各种击打动作。旋阀与两个汽缸之间有四种连通方式,可以产生提锤、连打、下压、电机空转四种动作。


空气锤的吨位用落下部分(包括工作活塞、锤头、上砥铁)的质量表示,常用的空气锤吨位为50 kg~750kg。空气锤的吨位主要根据锻件的材料、大小和形状来选择。


2.蒸气―空气锤是以的蒸汽或压缩空气(0.6―0.9MPa)为动力,驱动锤头上、下运动进行打击而完成自由锻工艺需要的锻锤。锻锤由锤身、气缸、落下部分和砧座等组成。吨位以落下部分的质量表示,常用的有1000―5000kg,可锻造70―700kg的中小型锻件。图4―2为拱式蒸汽自由锻锤的外形及工作原理图。工作时,通过操作手柄控制滑阀,使蒸气或压缩空气进入汽缸上腔或下腔,推动活塞上下运动,实现锤头的悬空、压紧、单次打击和连续打击等自由锻造的基本动作。


3.水压机大型锻件通常在水压机上完成,水压机是以高压水(20―200atm)作为动力的一种液压机,通过控制高压水和传动系统实现对坯料的施压变形。水压机锻造时,以静压力代替锤锻时的冲击力,其锻造压力大,锻透深度大,有利于改善大型锻件的内部质量。自由锻造所用水压机的吨位一般为800―15000t。


(二) 自由锻工序自由锻加工各种形状的锻件是通过一系列工序逐步完成的。根据变形性质和变形程度的不同,自由锻工序可分为基本工序、辅助工序和精整工序三类。


改变坯料的形状和尺寸,实现锻件基本成形的工序称为基本工序。自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、扭转、切割、错移等;为便于实施基本工序而使坯料预先产生某些局部、少量变形的工序称为辅助工序,如倒棱、压肩、分段等;为修整锻件的形状和尺寸,消除表面不平,校正弯曲和歪扭,使锻件达到图纸要求的工序称为精整工序,一般在终锻温度以下进行,如滚圆、平整、校直等。


下面简要介绍自由锻的基本工序:


1. 镦粗镦粗是使坯料横截面积增大、高度减小的锻造工序。主要用于饼块状锻件(如齿轮坯);也用于空心锻件冲孔前的准备工序、拔长时为提高锻造比作准备工序等。其基本方法可分为完全镦粗和局部镦粗。如固4―3所示




为使镦粗顺利进行,坯料的高度H0与直径D0之比应小于2.5~3。如果高径比过大,则易将锻坯镦弯,高径比过大或锤击力量不足时,还可能将坯料镦成双鼓形。若不及时矫正而继续锻打,则会产生折叠,使锻件报废。为保证锻造质量,镦粗时注意以下操作要点:1) 镦粗前,坯料加热温度要均匀,表面不得有凹孔、裂纹等缺陷,否则镦粗会使缺陷扩大。2) 镦粗时,坯料容易产生纵向弯曲,可将坯料放倒,轻轻锤击加以校正。锻造的坯料要放平,防止镦弯,镦弯后应及时校正。3) 锻造中,若产生双鼓形,坯料要及时校形。通常是镦粗和校形交替反复进行,以防止锻件折叠。4) 操作时,要夹紧坯料、平稳锻击、力要重而且正,以防锻件飞出伤人。


2. 拔长拔长是使坯料长度增加、横截面积减小的锻


造工序。主要用于曲轴、连杆等长轴类锻件。拔长时注意以


下操作要点:1) 锻打时,坯料每次的送进量应为砥铁宽度B的0.3~0.7倍,送进量太小,易产夹层;送


进量太大,金属主要向宽度方向流动,展宽多,延长少,反而降低拔长效率。2) 将圆截面的坯料拔长成直径较小的圆截面锻件时,必须先把坯料锻成方形截面,在拔长到边长接近锻件直径时,锻成八角形,然后滚打成圆形,如图4―4所示。3) 拔长过程中应不断翻转锻件,可用反复左右翻转900的方法顺序锻打,使其截面经常保持近于方形;也可以沿轴线锻完一遍后,先翻转1800锻打校直,然后再翻转900顺次锻打,如图4―5所示。后一种方法适用于大型坯料的拔长。拔长翻转时,应注意工件的宽度与厚度之比不要超过2.5,否则再次翻转后继续拔长将容易产生折叠。4) 锻造有台阶的轴类锻件,要先在截面分界处用圆棒或三角刀进行压痕或切肩,然后再局部拔长。5) 锻造有孔的长轴线锻件,可将已冲孔的空心坯料套人芯轴后拔长,目的是为了减小壁厚,增加长度。为提高拔长效率,可在上平、下V型的砥铁中锻打。



3. 冲孔在坯料上锻出通孔或不通孔的锻造工序,称为冲孔。冲孔分实心冲头冲孔和空心冲头冲孔(图4―6)两类。冲孔时注意以下操作要点:1)坯料应均匀加热到始锻温度,以提高塑性和防止冲裂。2)冲孔前坯料预先镦粗,尽量减少冲孔深度并使端面平整。3)为保证孔位正确,应先进行试冲,即先用冲子轻轻冲出孔位的凹痕,检查孔位准确后方可深孔。为便于取出冲头,冲前可向凹痕内撒些煤粉。4)一般锻件采用双面冲孔法,即将孔冲到坯料厚度的2/3~3/4深度时,取出冲子,翻转坯料,然后从反面将孔冲透。较薄的坯料可采用单面冲孔,单面冲孔时应将冲子大头朝下,漏盘孔径不宜过大,且须仔细对正。



冲孔后如要进一步增大孔径,则需扩孔。扩孔是减小空心毛坯壁厚而增加其内、外径,或仅增加其内径的锻造工序。它用来锻造环形锻件(如轴承环等)。扩孔的基本方法有冲头扩孔和芯轴扩孔两种,冲头扩孔适用于外径与内径之比大于1.7的锻件,芯轴扩孔可锻造大孔径的薄壁锻件。


4.弯曲弯曲是采用一定的工模具将坯料弯成所需角度或形状锻件的工序,一般用于锻造吊钩、U形叉等各种弯曲形状的锻件。


5.扭转扭转是将坯料的一部分相对于另一部分旋转一定角度的工序。扭转时,应将坯料加热到始锻温度,受扭曲变形的部分必须表面光滑,面与面的相交处要有过渡圆角,以防扭裂。扭转不在同一平面内、由几部分组成的锻件(如曲轴)时,可先在一个平面内锻出,然后再扭转到各自所要求的位置。6.切割切割是分割坯料或切除锻件余料的工序。切割的基本方法有单面切割和双面切割。前者可用于小尺寸截面的坯料切割,切割后截面较平整、无毛刺。后者用于切割截面尺寸较大的坯料。


7.错移错移是将坯料的一部分相对另一部分平移错开的工序。如图4―7所示。先在错移部分压肩,然后加垫块及支撑,锻打错开,最后修整。



在上述的自由锻基本工序中,镦粗、拔长和冲孔三种工序应用最多。此外,还有压口、压肩、分段等辅助工序以及摔圆、校正、整形等修整工序。在锻造过程中,应根据锻件的形状来选择不同的锻造工序。



  • 自由锻工艺过程

不同形状的锻件要采取不同的基本工序锻造成形。在选择和安排自由锻造基本工序时,应对多种工艺方案进行综合分析比较,要从优质、高效、低耗的基本原则出发,尽量减少工序次数和合理安排各工序的顺序,从而制定最佳工艺过程。


1.锻件图在自由锻工艺过程中,工序的确定是以锻件图为依据的。锻件图是在零件图的基础上考虑了加工余量、锻造公差、工艺余块(为简化锻件形状便于锻造而增加的多余金属,也称敷料。)等之后绘制的图解。为便于锻工在锻造过程中参考,可以在锻件图上用双点划线表示零件图的轮廓形状,并在各尺寸线下面的括号内标出零件的尺寸。形状简单的锻件,可不画出零件图的轮廓,直接在零件图上绘制锻件图。(详见表4-3中的锻件图一栏)。


2.带孔圆盘类锻件的自由锻工艺过程,其主要工序是在漏盘内局部镦粗和双面冲孔。


3.阶梯轴类锻件的自由锻工艺过程,其主要工序是在整体拔长后分段压肩和拔长。


表4-3所示为带孔圆盘类锻件与阶梯轴坯的锻件图与自由锻工艺过程



三、模型锻造


利用模具使坯料在模膛内产生塑性变形,从而获得锻件的锻造方法称模型锻造,简称模锻。模锻适用于中、小型锻件的大批量生产。模锻与自由锻相比有如下特点:(1) 可锻造形状较为复杂、内部质量较好的中小型锻件;(2) 锻件尺寸精度较高、表面粗糙度小。节约材料和工时;(3) 操作简单,生产效率高,易实现机械化和自动化;(4) 锻模制造复杂、成本高、设备昂贵、能量消耗大,模锻件的质量受到模锻设备吨位的限制,一般在150kg以下。根据不同的设备内型, 模锻分为锤上模锻和压力机上模锻。


锤上模锻在模锻锤上进行模锻的方法,称锤上模锻。



模锻锤锤 头的上下运动具有较高的精度,可锻造各种类型的模锻件,生产效率高,设备造价较低。模锻锤有蒸汽空气锤、无砧座锤、高速锤等。锤上模锻所用的锻模分上模和下模,上模固定在锤头上,下模固定在砧座上,工作时锤头带动上模向下打击,完成锻造过程。(图4―8)为模锻工作示意图,具有一个模膛的锻模,称为单模膛模锻;具有两个以上模膛的锻模,称为多模膛模锻。模膛根据功用不同可分为模锻模膛和制坯模膛。模锻模膛分预锻模膛和终锻模膛。制坯模膛分拔长、滚压、弯曲、切断等工序模膛。


2. 压力机上模锻压力机上模锻是指在压力机上进行的模锻。包括曲柄压力机上模锻、摩擦压力机上模锻、平锻机上模锻等。一般,曲柄压力机对于低塑性材料的锻造有利,生产率高,适合大批大量生产;摩擦压力机普遍用于中、小型工厂小型锻件的批量生产;平锻机适于有头部的杆类和有孔的锻件,可进行管件的局部镦粗或胀孔,但造价高,投资大,仅用于大批量生产。



四、 胎模锻




胎模锻是在自由锻设备上使用简单的非固定模具(胎模)生产模锻件的一种锻造方法。胎模不固定在锤头或砧座上,只是在使用时才放到锻锤砧座上。通常,锻件坯料先用自由锻造进行镦粗或者拔长等工序制坯,然后在胎模内终锻成形。胎模锻适用于小件的中、小批量生产。

胎模由模具钢制造而成,具有较高的热硬性(指材料在高温下仍然保持较高的硬度)、耐磨性和耐冲击性。胎模的种类较多,主要有扣模、筒模和合模三种。

4/20/2009

这个blog打不开了,不知道原因

无论是blog.chinesehammers.com 还是chinesehammer.blogspot.com 都打不开了。
问题解决,转换为自带的blogspot形式,然后再绑定域名。

4/13/2009

锻造的分类


1.根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。
  ①自由锻。利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。
  ②模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦辊锻径向锻造和挤压等等。
  2.按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

锻造定义





锻造:利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法。锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。